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ABSTRACT 

I n  most  tropical regions, the large-scalc flow pFtterns  are  most  reliably  established  by  analysis of the wind  reports. 
In these regions, stream  functions  must  be  calculated  either wholly or partially  from  the  wind  analysis  itself. To 
do this, however, it  is  necessary to specify the  stream  function, or its  normal  derivative,  on  the  boundary of the 
region  considcred. This paper cxarnines  several  schemes  which may  be useful for  this  purpose. 

1. INTRODUCTION 

The Helmholtz  theorem, 

V=Wv++vx  (1) 

which  allows decomposition of the wind  vector  into non- 
divergent  and  irrotational  components,  has  proven to be  a 
useful meteorological tool. (I/‘ is the  horizontal wind, k 
is a unit-vertical vector, 1/. is the  horizontal  stream func- 
tion, V is the isobaric gradient  operator,  and x is the 
horizontal velocity potential.)  Most applications of 
equation (1) have been to middle- and  high-latitude  data 
within the framework of numerical  weather  prediction 
models. Under  these circumstances, + is usually com- 
puted  from  the pressure-geopotential by use of a wind- 
pressure relationship. The veIocity potential is then 
obtained  from  a  second diagnostic calculation  in which 
the  thermodynamic  and  vorticity  equations,  and  the 
wind-pressure  equation, are employed. In  such  a pro- 
cedure,  wind  observations  serve  only as an aid in  the 
analysis of the  geopotential field and  are discarded there- 
after. 

In most  tropical  areas,  however,  the synoptic-scale 
flow pattern is most  reliably established by  the wind 
reports themselves. Thus,  in  applications of equation 
(1) to low latitudes, it would seen1 reasonable to  compute 
+ directly  from  the  wind field. The  vertical  component 
of the  curl of equation (1) is 

v2+= k.V X V (2) 

which may be solved as a Poisson equation for + if { is 
computed  from  the  wind analysis. 

2. THE PROBLEM 

To solve equation (2), it is necessary to know + or its 
normal  derivative on the  boundary of the region over 
which the solution is to be valid. In a previous paper [I], 
the  boundary values of + were  established  as follows. If 

s is distance  on  the  earth along the  boundary, positive in 
the counterclockwise sense, n is a  unit  vector  normal to 
the  boundary  pointing  outward,  and n is distance on the 
earth  normal to the  boundary increasing outward,  then 
the  scalar  product of n with  equation (1) gives 

(b+/bs) = - v n  + (bx/bn) (3 1 

where vn, the velocity component  normal to  the  boundary, 
is the  only  term known  from the wind analysis. Inte- 
gration of ( 3 )  around  the  boundary  curve yields 

-. f v,ds=f (bxlbn) d s  = (bx/bn) S (4 ) 

where X is the  total  length of the  boundary. In  [I], 
equation (3) was replaced by 

(d+/bs) = -0,s (bxlbn) (5) 

and  the wind  components  normal  to  the  boundary were 
replaced by vn- (xdldn). This  has  the effect of reducing 
the  mean divergence over the  area enclosed by  the  bound- 
ary  curve  to zero. If one of the  boundary-grid  points is 
assigned an  arbitrary  value of +, the  stream  function a t  
the  remaining  boundary-grid  points  may  be  found by 
numerical integration of (5) along the  boundary.  This 
technique  appears  to  be  entirely  equivalent to  that em- 
ployed by Brown and Neilon [2] in  an  application to 
middle-latitude  data. For the cases treated  in [2]  and 
also for those utilized in [I], the  method described above 
appeared to  give satisfactory  results. 

In  later applications of the  same  technique by Bedient 
and Vederman [3] and  by  Hawkins (research in progress 
at  the  National  Hurricane  Research  Laboratory), it was 
found that utilization of equations (4) and ( 5 )  leads to  
difficulties which  can best  be described by  the following 
example taken from  Hawkins’  work.  Figure 1 shows 
a superimposition of Hawkins’ grid on the  Mmcator pro- 
jection he uses. There  are 10 rows and 13 columns; 
spacing between grid points  is  the  length of 2 O of longitude 
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FIGURE 1.-Region of study  and grid  points. The  heavy  border 
in figures 2-15 outlines  this  same region. 

FIGURE 2.--\Vind analysis a t  1000  mb.  for 1500 GMT, October 13, 
1956. Streamlines  are solid  lines with  arrows.  Isotachs  arc 
dashcd lincs.  Wind  speeds arc given  in  m. sec.-l 

a t  22.5ON. (the  true  latitude of the  projection).  Figure 2 
shows the  subjective analysis of the 1000-mb. streamlines 
and isotachs for  1500 GMT, October 13, 1956. Of particu- 
lar  interest is the cyclone in  the center of the  grid and  the 
trough which protrudes  southwestward  from  the cyclone. 

Figure 3 shows the  stream  function which results when 
equations (4) and ( 5 )  are used to  establish the  boundary 
values of + I .  Notice that  the  stream function gives a 

1 This  calculation  proceeded as follows. Grid-point winds were  read  from figure 2. 
The relative  vorticity was computed  at each  internal glid poi[it. Boundary  values of 
C were  calculated from equation ( 5 ) .  Equation (2) was solvc:l 'or the  stream  function. 

FIGURE 3.-The stream  function at 1000 mb.  for 1500 GMT, October 
13, 1956, obtained  from  the  original  calculation  in  which  cquations 
(4) and (5 )  are used to establish the  boundary conditions on $. 
To  obtain  stream function  values  in m.2 see.-', multiply by 2X 105. 
Stream  function  values  given  by the figure may  be  thought of as 
pressure  heights  in  meters. The non-divergent  wind  can  be  cal- 
culated  by  use of the geostrophic-wind equation,  using 5X 10-5 
scc.-1 for  the Coriolis parameter  and  10  m. see.? for  gravity. 

distorted  picture of the cyclonic system. The  latter 
appears  as  an open wave in the easterlies  with  lowest 
+values on the  southern  boundary.  Details of the cal- 
culation  are  as follows. The integrations of equations 
(4) and ( 5 )  were done by  the trapezoidal  rule; the  vorticity 
was approximated  by 

where i is the row (meridional)  index and j is the column 
(longitudinal)  index, v is the meridional wind component, 
u is the zonal wind component, m is the map-scale  factor, 
and As is the mesh constant;  the  I~aplacian was approxi- 
mated  by 

and  the resulting  system of algebraic  equations was 
solved for Gi. by Liebmann  relaxation  with  a  tolerance of 
60,000 m.' sec." 

It, may be arp:uerl that, even aside  from  truncation 
errors, the strear-1 function  cannot  provide  a close fit to 
the wind analysia because the winds are not non-divergent. 
As will be seen iater,  this  argument  has  a certain degree 
of validity.  However, it would indeed  be  disappointing 
if a closer correspondence between the wind analysis 
and  the  stream  function could not be obtained.  Figures 
4 and 5 show, respectively, the  vorticity  and  divergence 
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FIGURE 4.-ltelativc  vorticity a t  1000 mh. for 1500 GIIT, October 
13,  1956, in  units of 10-e set.-' 

FIGURE 6.“Partial  stream  function (+bHI) a t  1000 m b .  for I500 
GMT, October 13,  1956,  calculntccl from  equation ( 7 ) .  Units nnd 
scaling are thc  same as in figure 3. 

computed  from  the wind analysis.  Clearly, the vor- 
ticity, on the  average, is significantly larger in magnitude 
t h m  is the divergence and one would not  want  the x- 
field to  be of sufficient intensity to explain the  major 
differences between the flow patterns  portrayed by figures 
2 and 3.  

A clue to the  nature of the difficulty is provided by the 
following a,nalysis. Let $B be the  boundary  values of $ 
calculated from equations (4) and ( 5 ) .  If $ R  is used to 
represent  the strettm function shown by figure 3, then 

$R== $221 -1 $R2 (6) 

70-,70 ,60 ~~ 

/ 
I” 

lo// 0 -10 “10 0 10 

FIGURE 7.--Pnrtid stream  function (+bE2) a t  1000 mb. for 1500 
GMT, October  13, 1956,  calculatocl from equation (8). Units and 
scaling arc the s m ~ e  as in figure 3. 

The fields of $R1 and f iR2 are  shown,  respectively, by fig- 
ures 6 and 7. From figure 6, we see that the  vorticity 
defines a  large cyclone whose center is, more or less, in the 
location of the vortex shown by figure 2 .  However, $R2 

(fig. 7), which is determined by  the  boundary conditions, 
shows relatively  strong easterlies along the  southern por- 
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lion of the $R1-cyclone and  the sun1 of the two fields  gives 
the open  wave  shown by figure 3 .  It therefore appears 
that  at  least  part of the difficulty lies in  the choice of 
1,ound:try conditions. 

Sangster [4] proposes  a  more rigorous approach to the 
calculation of boundary values of +. This is based on the 
use of equation (3) in nnmodified  form. The  boundary 
values of ax/&, needed in equation ( 3 ) ,  are  calculated 
from the x-field obtained from the  solution of 

v2x=v.V, x = O  on the b0unda.r.y (9 1 

where V.V is the divergence calculated  from  the  wind 
analysis. Sangster [4] shows that  the use of (9) to 
establish x masitnizes  the  portion of the  total  kinetic 
energy  carried  by $ and minimizes the  portion  carried  by 
X. 

We have  experimented  with  Sangster's  method in three 
versions which differ only  in  the  details of the  numerical 
calculation. 

Version I. Equation (9) is solved. bxlbn on the 
boundary is calculated  from  a one-sided inward difference 
over a single grid  increment.  Equation (3) is integrated 
trapezoidally  along  the  boundary to  obtain  boundary 
values of $. Equation (2) is solved to obtain  the  internal 
values of $. 

Version 11. Equation (9) is  solved. bx/bn is  evalu- 
ated  by  centered differences a t  the  grid  points  adjacent 
to  the  boundasy (which  form what we  will call the "inner 
boundary").  Equation ( 3 )  is integrated  trapezoidally 
along the  inner  boundary  and  equation (2) is solved for $ 
a t  grid  points  internal to the  inner  boundary. To  estab- 
lish II. on the  outer  boundary, we take  the  scalar  product 
of s with  equation  (1).  This gives 

( W b )  =us- (dx/bs) (10) 

which is integrated  trapezoidally  from  the  inner to the 
outer  boundary  with bx/bs eoaluated  by  centered difl'er- 
ences. This  establishes $ a t  all grid points on the  outer 
boundary  with  the exception of the  four corner points. 
The corner points  are  evaluated as simple arithmetic 
means of the +values at  the two adjacent  grid  points on 
the  outer  boundary. 

Version III. The  stream  function on the  inner 
boundary is obtained  by  the  procedure used in Version 
111. However, before the  solution of equation ( 2 )  is 
begun,  values for I) on the  outer  boundary  are  calculated 
by  the  method used in Version 11. At  this  point,  the 
+-\dues on the  inner  boundary  are discarded and (2) is 
solved for $ a t  grid  points  internal to the  outer  boundary. 

A calculation using a  normal-derivative  boundary 
condition was  also carried  out. 

Normal-Derivative  Boundary  Condition. Equation (9) is 
solved for x. Equation (2) is solved for # a t  grid points 
internal  to  the  outer  boundary;  during  each  scan of the 
relaxation $ on t1he outer  boundary is recalculated by a 
trapezoidkl integration of (10) from the  inner to the outer 

FIGURE S.-Stream function at 1000 mb.  for 1500 GMT, Oct,ober 13, 
1956, calculated by Version I. Units and scaling are  the  same 
as in figure 3. 

boundary;  the  most  recent  estimates of t) a t  the  internal 
grid  points  and  a  centered difference estimate of bxlbs 
are used in this  calculation. 

A version of the  approach suggested by  Bedient  and 
Vederman [3] was also tested.  With  the  normal-deriva- 
tive  boundary  condition,  the  problem  may  be  stated 

vz+=p with (d+/bn)=v,- @x/&) 011 the  boundary (11) 

The problem defined by (11) is equivalent to  

v2$h=p with $1=0 on the  boundary (12) 

v'jbZ=O with (d$,/dn) + (&/bn) 

where 
=vs- (bxlbs) on the  boundary (13) 

Ic"Ic 'I+$2 (14) 

Since v& is  a  non-divergent  vector, me nmy  write 

~ X V $ ~ E V $ ~  (15) 

From (15) and (13), we obtain 

v ~ + ~ = O  with (&b3/bs) 
=(bJ.,/bn)-v,+(bx/bs) on the  boundary (16) 

From (I) and (15), we find 

(b$,/bn) = -vu+ (bxlbn) (17) 



April 1965 

~~ ~~~ ~ 

Harry F. Hawkins  and  Stanley L. Rosenthal 2 49 

FIGURE 9.-Stream function at 1000 mb.  for  1500 GMT, October  13, 
1956, calculated  by Version 11. Units  and  scaling  are  thc  same 
as  in figure 3. 

FIGURE lO."Strcam  function at 1000 mb.  for 1500 GMT, October 
13, 1956, calculatcd  by Version 111. Units and scaling are  the 
same  as  in figurc 3. 

By use of (12) to (19), the following technique was 
devised. 

I),-Version. Equation (9) is solved for x. Equation 
(12) is solved for I)l. The  boundary condition given with 
(16) is integrated trapezoidally  along the inner  boundary 
with b$q/dn evaluated by centered differences. Equation 
(17) is integrated  trapezoidally  from the  inner to the  outer 
boundary to  establish I)3 at  all but  the corner-grid points 
on the  outer  boundary.  At  the corner points, I), is taken 
as the  arithmetic  mean of the values at   the tmo adjacent 
outer  boundary grid  points. The Laplace  equation  for 
g3 is solved  to obtain values a t  grid  points  internal  to  the 
outer  boundary.  Equation (18) with dI),/dn evaluated 

-15 -12.5 -10 

FIGURE 11.-Stream function a t  1000 mb.  for 1500 GMT, October 
13, 1956, calculated  with  normal-derivative  boundary  condition. 
Units  and scaling are t,he same as in figure 3. 

FIGURE 12."Stream  function a t  1000 mb. for 1500 GWP, October 
13, 1956, calculated  from &-version. Units and scaling are  the 
same  as  in figure 3. 

by centered differences is integrated trapezoidally along 
the inner  boundary  thereby establishing I)2 on the  inner 
boundary.  Equation (19) with bI),/bs evaluated  by 
centered diff erences is integrated trapezoidally  from the 
inner  to  the  outer  boundary whicl~ establishes +q on the 
outer  boundary  with  the esception of the corner-grid 
points. The corner  points are  treated as described above 
for I)3. The Lapla.ce equation  for I)z is solved to  obtain 
values at  grid  points  internal  to  the  outer bounclary. 
Equation (14) is used to  calculate I). 

Figures 5-12 show the  results  obtained  from  the  five 
methods  just described.  These stream functions  appear 
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FIGURE 13.--Zond-nintl  component. a t  1000 mb. for 1500 G n v r ,  

October 13, 195G, calculated from wind :Innlysis s11on.n by figure 
2. Units arc 111. sec.-l; west winds are positive. 

to give  somewhat  better  representations of the flow pat,- 
tern  than wtls the case with  the original  calculation. The 
patt,erns  are,  however,  still  distorted.  None o f  the 
nlethods gives a vortex  in  the location shown by figure 2 .  
On the  other  hand, all of the  methods give u sprlrious 
cyclone close to  the  southern  boundary. 

T o  pursue  the  matter  further, figure 13 shows the zonal 
component of the  analyzed  wind. In particular, we  wisll 
to draw  attention to  the  undulating zone of westerlies 
found over the  southern  portion of the  chart.  These 
westerlies constitute  the flow around  the  southern portions 
of the cyclone and  trough.  For  the  sake of co1npar1~011, 
figwe 14 shows the zonal wind computed  from 

u= - @*/by) + (bx/dr) (20) 

where the  stream  function  obtained from Version III has 
been  employed. Here we note  a zone of westerlies whicll 
in shape  and  location is quite similar  to that in figure 13. 
Finally,  figure 15 shows the zonal wind computed from 

u= - (b*/bY) ( 2  1) 

where, again,  the  stream  function  obtained  from Version 
I11 has been used. The zonal winds of figure 15 show a 
break  in  the westerly band  in  the region where the flow 
a,round the  southern  portion of the cyclone should  be. 
The easterlies which occupy  this region close off the 
spurious cyclone noted  near  the  southern  boundary on 
the  stream  function  charts.  Thus we must conclude that 
accurate portrrbyal of the wind directions  associated  with 
the cyclone and  trough  found on  figure 2 requires both 
the  irrotational  and  the  non-divergent  parts of the wind 
if the calculations are carried out  by  the t.echniques 
employed  here. 

Root-mean-square-vector-errors (R.MSVE) appropriate 
to each calculation  are shown in table 1. :It is clear that 
the original calculation and Version :I  are decidedly in- 
ferior to the  other techniques. Versions IT and %TI and 
the normal-derivative  calculation give the best  fits if  we 
compare the analyzed wind to the stxeam wind alone. If 
we compare  with the S L U ~  of the  stream  and  potential 
winds, Versions I1 and 111 are somewhtlt more wxurate 
than  the  normal  derivative  cdculation.  Reduction of the 
relaxation  tolerance from 60,000 1 1 3 . ~  sec." to 6,000 111.' 

sec." resulted in changes in the RMSVE of about I O p 3  
sec.". 

Tables 2-6 show sindar statistics for other cases taken 
from  the  data files a t  the  Nutiond  Hurricane Research 
Laboratory.  For all of these cases, the geographical area 
m d  the grid are  very  nearly  the  same  as  those shown by 
figure 1. Overall it seems that  the original  calculation is 
clearly inferior to  the  other techniques. Versions IT and 
III and  the normal-derivative  calculations seem to  be  the 
most  accurate of the  methods  tested.  However,  the com- 

\ \<parison 
Analyzed wind agninst Analyzed wind against 1 kXV+ 

\ 
kXV++Vx 

Method \ \I I 
3.35 

.97 

. 43  

.53 

. 40  

. 5" 
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0-0 I 

putations with the normttl-clerivati\.e boundary condition 
required rrbout  twice the nunlber of relnsat,ion  scans as did 
Versions TI and TT.1. On this  basis, Versions I1 and TIT 
appear  to be the most useful of the techniques tested. 

3. SUMMARY  AND  CONCLUSIONS 
Cnlculntions of bout1d:tr.y  \.:dues of the  stream  function 

by  the  crude technique wtlich makes use of equations (4) 
and ( 5 )  cannot be relied upon to give satisfactory  results 
for regions of the size considered 11ere. I n  view of the 
somewhat  disappointing  results  obtained by Bedient and 
Vederman [3] (whose calculrttions covered the  area, 
20" S.45" N., 105' E. eastwrtrd to 145" W.) in an applicn- 
tion of equ:ttions (4) and (5),  it  seems that  this problem is 
also encountered  when  larger regions are considered. 

Substantially  better solutions for fi are obtained by use 
of the bounclnry condition given by equation ( 3 )  or by  that 
gi17en with  equation (11), provided that  the derivatives of 
the velocity potential are estimated ns centered differences 
of the solution to  (9). Solution of the problem with  the 

TABLE 2.-RMSVE ( 1 1 ) .  scc.-I) for S50 mh., I500 GAIT, 
October 1 3 ,  I956 

\ 

\ \\ Comparison 
Analyzed  wind  against  Analyzed  wind  against '\ I k X W  kXW+Vx 

Method '\ I I 
Original ............................ 2 . 6 5  1 .98  
Version I ........................... 
Version 111 

.I38 1. ti5 Version I1 .......................... 

. i a  1.73 

1.58  Normal  derivative ................. 
1. ti4 ......................... .65 

h.. ................................ 1. GY 
. 6 2  
. 8 3  

norrnnl-deri\~nti\re  boundary  condition  (equation (1 1)) 
requires about twice RS much mnchine time as do the tech- 
niques based on equntion (3). This is the  result of t t  

slower convergence rate in  the  relnsntion. 
It is not unlikely that  other schemes, such as Snngster's 

[4] staggered  lattice  technique, would prove to be more 
:xcurate than any of those  tested  here. 

TABLE 3.-lER/ISVE (111. sec.-I) for 550 mb., 0000 GMT, 
August 25,  1962 

\ I I 
\ ~ o t n p t r i s o n  

Method '\ .\ 
Analyzed wind against 

k X W  

\\ 

Analyzed  wind  against 
kXV11.+Vx 

Original ............................ 

Version I1 
Version I 

Normal  dcrivative 
Version I l l  

11.3.. ................................ 

........................... 
.......................... 
......................... 

................. 

0.95  
. 7 3  
. 7 2  
.7? 

1.13 
.70 

0 . 7 7  
. 5 4  

. 5 5  

. 5 5  

1 . 0 3  
.53 

TABLE 4,"RMSVE (111. sec.-l) for S50 mb., 0000 GMT, 
August 26, 1962 

'\ I I 
'\ Conwarison 1 Analyze(l;zl  against 

Analyzed  wind  against 

\ k X W f V x  

Metlml 
'\\ I I 

\ 

........................... 
Version I 
Original. 1 . 1 5  

.97 
0. 75 

........................... .48 
Version I1 .......................... .98 
Version 111 ......................... . 9 7  

. 5 2  

. 5 0  
Normal derivative ................. .95 . 4 7  
*3 .................................. 1. l? . 7 7  

TABLE 5.-RMSVE (111. SCC.-I) for 250 nib., 0000 GMT, 
August 25, 1962 

i kXV11. 
Analyzed  wind  against Analyzed  wind  against 

kXW+Vx 

Original ............................ 

.64 1.07  Norlnal  dcrivat.ivc ................. 

.El 1 . 1 0  Version I11 ......................... 
,139 1 . 1 2  Version I 1  .......................... 

1.11 1 . 5 0  Version I ........................... 
1.81  2. 13 

11.3.. ................................ 1. 16 . 7 5  

'\ Comparison 
Analyzed  wind  against Analyzed  wind  against 

'1 
k X W  kXV11.LfVx 

Original ............................ 

Version I1 

1 . 3 2  
Version 1.". 1 . 0 7  

.......................... . 8 3  
Version I11 ......................... 
Nornlnl  dcrivativc ................. 

.83 

. 8 4  
93. ................................. 1 . 0 2  

....................... 
1 . 1 1  

.86 

.77 

.7t i  

. 8 0  

. 79  
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